Yang-Mills connections of Cohomogeneity One on $SO(n)$-bundles over Euclidean spheres

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Principal Bundles over Spheres and Cohomogeneity One Manifolds

We classify SO(n)-equivariant principal bundles over Sn in terms of their isotropy representations over the north and south poles. This is an example of a general result classifying equivariant (Π, G)-bundles over cohomogeneity one manifolds.

متن کامل

Yang-Mills Solutions on Euclidean Schwarzschild Space

We show that the apparently periodic Charap-Duff Yang-Mills ‘instantons’ in timecompactified Euclidean Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant along the time direction (no barrier) and therefore, there is no tunneling. We also demonstrate that the solutions found to date are three dimensional monopoles and dyons. We conjecture...

متن کامل

Yang-mills Bar Connections over Compact Kähler Manifolds

In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of...

متن کامل

Automorphic Forms,Bundles and Yang-Mills equations

We show how the weight of automorphic forms is related to the holomorphic positive and negative line bundles. Then, from the relation of holomorphic vector bundles and the existence of Yang-Mills connection on the stable bundle , we discuss how the weight of automorphic forms can be associated with the transition function of the Yang-Mills connection.

متن کامل

Geometry of minimal energy Yang–Mills connections

where FA denotes the curvature of A. In four dimensions, FA decomposes into its self-dual and anti-self-dual components, FA = F + A + F − A , where F A denotes the projection onto the ±1 eigenspace of the Hodge star operator. A connection is called self-dual (respectively anti-self-dual) if FA = F + A (respectively FA = F − A ). A connection is called an instanton if it is either self-dual or a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Journal of Mathematics

سال: 2013

ISSN: 1093-6106,1945-0036

DOI: 10.4310/ajm.2013.v17.n1.a6